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P E R S P E C T I V E

Statistical inference and reproducibility in geobiology

1  | INTRODUC TION

The	late,	great	Karl	Turekian	would	often	joke	about	the	number	of	
new	data	points	required	for	a	geochemical	paper.	The	answer	was	
one:	When	combined	with	a	previously	published	data	point,	a	“best-	
fit”	 line	could	be	drawn	between	the	two	points,	and	the	slope	of	
the	 line	calculated,	 thereby	giving	rate.	The	 joke	had	 its	 roots	 in	a	
seminar	Dr.	Turekian	gave	far	earlier	in	his	career,	where	the	entire	
talk	focused	on	the	first	data	point	of	a	novel	measurement	(a	hard-	
won	data	point,	but	only	one	nonetheless).	When	an	apparently	ex-
asperated	 audience	member	pointed	 this	 out,	 Turekian	 reportedly	
replied	“well	it's	one	more	than	anyone	else	has!”	(Thiemens,	Davis,	
Grossman,	 &	 Colman,	 2013).	 This	 anecdote	 raises	 two	 important	
points	about	our	field:	First,	establishing	new	analytical	techniques	
is	 laborious,	 expensive,	 and	 requires	 considerable	 vision	 and	 skill,	
and	second,	at	the	nascent	stages	of	any	new	record,	the	number	of	
observations	will	be	small.

Geobiology	is	now	at	the	point	where	some	mature	data	records	
(for	instance	δ13C	or	δ34S)	have	had	thousands	or	tens	of	thousands	of	
data	points	generated.	There	also	exist	millions	of	individual	gene	se-
quences	from	environmental	genomics	surveys.	In	contrast,	emerg-
ing	proxies	 (for	 instance,	 selenium	 isotopes,	 I/Ca	 ratios,	 carbonate	
“clumped”	 isotopes),	or	biomarker	 studies	and	 technical	geomicro-
biological	 experiments	 still	 face	 the	 issue	 Turekian	 described	 and	
have	 only	 a	 handful	 of	measurements	 or	 are	 transitioning	 toward	
larger	datasets.	 The	question	 remains	how	best	 to	 interpret	data-	
rich	records	on	the	one	hand,	and	scattered,	hard-	won	data	points	
on	the	other	hand.	Here,	using	examples	from	within	geobiology	as	
well	as	the	development	of	other	fields	such	as	ecology,	psychology,	
and	medicine,	we	argue	that	increased	clarity	regarding	significance	
testing,	multiple	 comparisons,	 and	 effect	 sizes	will	 help	 research-
ers	 avoid	 false-	positive	 inferences,	 better	 estimate	 the	magnitude	
of	changes	 in	proxy	records	or	experiments,	and	ultimately	yield	a	
richer	understanding	of	geobiological	phenomena.

2  | STATISTIC S AND REPRODUCIBILIT Y IN 
OTHER FIELDS AND IN GEOBIOLOGY

We	 start	 by	 examining	 statistical	 practice	 and	 reproducibility	
outside	 of	 our	 field,	 before	 relating	 these	 broader	 themes	 back	
to	 geobiology.	 Science	 as	 a	whole	 is	 currently	 described	 as	 fac-
ing	 a	 “crisis	 of	 reproducibility,”	 with	 diverse	 studies	 in	 multiple	
fields	 failing	 to	replicate	published	findings	 (see	Baker,	2016	for	
a Nature	 survey	 of	 reproducibility	 across	 fields).	 The	 issue	 here	

is	not	 technical	 reproducibility	at	 the	sample	 level	 (e.g.,	 “If	 I	put	
this	same	sample	 in	a	mass	spectrometer,	will	 I	get	the	same	re-
sult	twice?”)	but	rather	at	the	level	of	the	effects	observed	in	the	
manuscript	(e.g.,	a	given	treatment	causes	a	specific	outcome,	or	
a	 predictor	 variable	 is	 correlated	with	 a	 response	 variable).	 For	
example,	independent	efforts	to	reproduce	“landmark	papers”	in	
cancer	biomedical	research	by	pharmaceutical	companies	Amgen	
(Begley	 &	 Ellis,	 2012)	 and	 Bayer	 (Prinz,	 Schlange,	 &	 Asadullah,	
2011)	 have	 only	 been	 able	 to	 replicate	 11%	 and	 20%–25%	 of	
published	results,	respectively.	Similarly,	a	critical	study	of	gene-	
by-	environment	 (GxE)	 interactions	 in	psychiatry	 found	 that	only	
27%	of	 published	 replication	 attempts	were	positive	 (Duncan	&	
Keller,	 2011).	 Further,	 this	 small	 proportion	 of	 apparently	 posi-
tive	replications	was	likely	inflated;	there	were	clear	signatures	of	
publication	bias	(the	tendency	to	publish	significant	results	more	
readily	than	non-	significant	results)	among	replication	attempts	in	
the	GxE	literature.	 In	psychology,	a	 large-	scale	replication	effort	
found	that	only	39%	of	studies	could	be	replicated	(Open	Science	
Collaboration,	 2015),	 and	 similar	 problems	plague	much	of	neu-
roscience	 research	 (Button	 et	al.,	 2013).	 The	 studies	mentioned	
here	are	likely	just	the	tip	of	the	iceberg	(Begley	&	Ioannidis,	2015;	
Ioannidis,	2005).

The	causes	of	these	low	rates	of	replication	are	varied.	There	
are	 likely	 different	 underlying	 causes	 for	 poor	 reproducibility	
across	fields,	and	the	severity	of	the	problem	undoubtedly	varies	
as	well.	Our	 personal	 experience	 trying	 to	 implement	 published	
protocols	without	 the	highly	detailed,	 laboratory-	specific	knowl-
edge	 that	 is	 often	 omitted	 (generally	 for	 space	 reasons)	 from	
Materials	and	Methods	sections	suggests	to	us	that	at	least	some	
percentage	of	failed	replications	are	caused	by	inadvertent	meth-
odological	 differences.	 Indeed,	 the	 Open	 Science	 Collaboration	
replication	of	psychology	studies	was	attacked	for	poor	adherence	
to	original	protocols	(Gilbert,	King,	Pettigrew,	&	Wilson,	2016).	In	
order	to	achieve	precise	replication	of	protocols,	in	extreme	cases	
researchers	have	had	to	travel	to	other	laboratories	and	work	side-	
by-	side	to	identify	seemingly	trivial	methodological	differences—
vigorous	stirring	versus	prolonged	gentle	shaking	to	isolate	cells,	
for	instance—that	had	an	outsized	effect	on	reproducibility	(Hines,	
Su,	 Kuhn,	 Polyak,	 &	 Bissell,	 2014;	 Lithgow,	 Driscoll,	 &	 Phillips,	
2017).	Methodological	differences,	though,	can	likely	only	explain	
a	portion	of	the	failed	replication	attempts.	True	scientific	fraud	is	
also	something	that	makes	headlines	and	erodes	public	trust,	but	
again	likely	only	accounts	for	a	small	proportion	of	replication	fail-
ures	(Bouter,	Tijdink,	Axelsen,	Martinson,	&	ten	Riet,	2016;	Fanelli,	
2009).
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So,	 what	 causes	 such	 poor	 reproducibility?	While	 recognizing	
again	that	the	causes	can	vary	across	fields,	clearly	some	of	the	most	
important	 factors	 are	 under-	powered	 studies,	 a	 reliance	 on	 Null	
Hypothesis	Significance	Testing	(NHST,	e.g.,	p <	0.05)	to	determine	
“truth”	or	whether	a	paper	should	be	published,	and	a	 lack	of	cor-
rection	 for	 implicit	or	explicit	multiple	comparisons	 (more	broadly,	
“researcher	degrees	of	freedom”).	These	issues	were	known	within	
some	fields,	but	were	brought	to	more	widespread	attention	through	
the	publication	of	a	provocative	2005	essay,	“Why	Most	Published	
Research	Findings	Are	False”	 (Ioannidis,	2005).	 Ioannidis	 identified	
the	following	causal	factors	as	 leading	to	the	overall	very	 low	per-
centages	of	positive	 replication	 findings:	 (a)	 small	 sample	 sizes,	 (b)	
small	effect	sizes,	(c)	high	numbers	of	tested	relationships,	(d)	flexi-
bility	in	designs	and	definitions,	and	what	represents	an	unequivo-
cal	outcome,	(e)	conflicts	of	interest	or	prejudice	within	a	field,	thus	
increasing	bias,	and	(f)	“hot”	fields	of	science,	where	more	teams	are	
simultaneously	testing	many	different	relationships.	This	tendency	
is	exacerbated	by	the	incentive	structure	for	journals	and	authors	to	
publish	positive	results	and	publish	often.

Our	 field	 of	 geobiology	 is	 likely	 less	 besot	 by	 some	 of	 these	
issues	 related	 to,	 for	 instance,	publication	bias.	The	 reason	why	 is	
that	data	analysis	is	often	accomplished	through	visual	rather	than	
statistical	 comparison;	explicit	p-	values	 that	would	be	used	as	 the	
arbitrator	 of	 accept/reject	 decisions	 in	 other	 fields	 are	 not	 gener-
ated.	Figure	1	documents	the	use	of	statistical	testing	in	the	journal	
Geobiology	compared	to	a	sister	publication	by	Wiley,	Marine Ecology. 
This	comparison	is	not	meant	to	single	out	Geobiology	as	a	journal;	
we	are	certain	the	results	would	be	similar	in	our	other	disciplinary	
journals.	In	this	comparison,	we	considered	the	100	most	recent	pa-
pers	at	the	time	of	writing	that	reported	new	data	(so	review	papers,	
commentaries,	 or	 papers	 that	 were	 descriptive	 in	 nature,	 such	 as	
describing	stromatolite	morphologies—basically	any	paper	where	no	
new	numerical	data	were	generated—were	excluded).	Papers	were	
considered	to	have	a	“statistical	analysis”	simply	if	there	was	some	
effort	to	understand	the	possible	influence	of	error	and	sampling	on	
the	precision	of	the	inference,	recognizing	this	can	take	many	forms	
(e.g.,	formal	NHST,	bootstrapping,	and	Bayesian	posterior	probabil-
ities).	 In	 the	marine	ecology	 journal,	 essentially	 every	paper	 (97%)	
reporting	new	data	used	a	 statistical	 analysis	 (similar	 results	were	
reported	 by	 Fidler,	 Burgman,	 Cumming,	 Buttrose,	 &	 Thomason,	
2006,	for	other	ecology	journals).	In	Geobiology,	the	percentage	with	
any	sort	of	statistical	analysis	is	far	lower,	at	38%	(chi-	squared	test;	
p = 2.0 × 10−18).	We	recognize	that	some	of	this	difference	may	be	
due	 to	different	data	 types	 and	approaches,	 but	our	personal	ob-
servation	 is	 that	many	studies	 in	Geobiology	are	comparing	groups	
of	data	visually	rather	than	statistically.	Further,	the	statistical	anal-
yses	that	are	published	in	Geobiology	are	concentrated	in	molecular	
phylogenetic	studies,	where	bootstraps	or	Bayesian	posterior	prob-
abilities	 are	 commonly	 used	 to	 assess	 precision.	 Statistical	 testing	
is	 far	 less	 common	 in	non-	phylogenetic	 studies	 (e.g.,	many	geomi-
crobiology,	geochemistry,	biomarker,	and	biomineralization	studies).	
Comparing	the	most	recent	papers	in	Geobiology	against	the	first	100	
data-	driven	 papers	 in	 the	 journal	 (first	 published	 in	 2003)	 reveals	

that	the	percentage	with	a	statistical	test	has	increased	slightly	(from	
26%	to	38%)	but	the	difference	between	the	two	time	intervals	ex-
amined	is	not	statistically	significant	(using	p	<	0.05	to	declare	statis-
tical	significance;	chi-sq	=	2.8,	df	=	1,	p	=	0.095).

We	 propose	 that	 increased	 emphasis	 on	 statistical	 testing	 as	
a	critical	step	 in	data	analysis	 is	needed	 in	the	field	of	geobiology.	
Put	simply,	why	build	a	scientific	worldview	based	on	studies	where	
it	 has	 not	 been	 demonstrated	 that	 the	 observed	 differences	 are	
more	 than	what	would	be	expected	 from	sampling	variability?	On	
the	other	hand,	blind	reliance	on	statistical	testing	will	not	be	help-
ful	 either.	 As	 cogently	 argued	 by	 Fidler,	 Cumming,	 Burgman,	 and	
Thomason	(2004),	ecology	as	a	field	is	mired	in	statistical	fallacies:	
specifically,	the	erroneous	beliefs	that	p-	values	are	a	direct	index	of	
effect	size,	and	that	the	p-	value	represents	the	probability	that	the	
null	hypothesis	is	true	(or	false).	Consequently,	simply	running	more	
statistical	analyses	is	not	a	sufficient	avenue	to	accurate,	reproduc-
ible,	 and	 correctly	 interpreted	 findings.	Here,	we	hope	 to	use	 the	
opportunity	 provided	 by	 broader	 discussions	 about	 statistics	 and	
reproducibility	 in	 science	 to	 review	 three	 important	 concepts—(a)	
significance	testing,	(b)	multiple	comparisons,	and	(c)	effect	size—and	
translate	them	to	our	field	of	geobiology.	This	manuscript	is	intended	

F IGURE  1 Use	of	statistical	testing	in	the	100	most	recent	
data-	driven	papers	in	Geobiology	(present)	versus	Marine Ecology. 
The	first	100	papers	in	Geobiology	(early)	were	also	compared.	
“Statistical	tests”	were	broadly	defined	(for	instance,	bootstrapping,	
Bayesian	approaches,	etc.,	and	not	only	formal	Null	Hypothesis	
Significance	Testing).	Papers	without	a	“Materials	and	Methods”	
section	or	that	did	not	present	new	numerical	data	(e.g.,	review/
synthesis	papers,	modeling	papers)	were	not	included	in	the	
comparison

Use of statistics in 100 papers from each journal
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to	be	educational	and	to	start	a	discussion	regarding	proper	statisti-
cal	analyses	in	geobiology.	Our	focus	is	on	what	we	believe	are	the	
more	familiar	terms	of	formal	NHST	(i.e.,	a	frequentist	approach),	but	
we	discuss	the	goal	of	a	more	flexible	approach	to	statistical	think-
ing	at	 the	conclusion	of	 the	paper.	 In	this	spirit,	we	recognize	that	
these	topics	will	be	familiar	to	many	readers,	and	indeed	aside	from	
a	geobiological	spin,	there	is	little	intellectual	territory	here	that	has	
not	 been	 extensively	 covered	 in	 medical,	 psychological,	 and	 eco-
logical	journals.	However,	for	readers	less	familiar	with	these	topics	
we	hope	this	essay	may	provide	useful	guidance	for	avoiding	some	
of	 the	 problems	 of	 reproducibility	 that	 have	 plagued	 other	 fields.	
Geobiology	ultimately	has	the	opportunity	to	be	among	the	select	
group	of	fields	that	do	not	have	major	reproducibility	problems.

Take home message:	 There	 are	 acknowledged	 issues	 with	 Null	
Hypothesis	Significance	Testing	(including	publication	bias	and	rep-
licability	 in	 science	 at	 large),	 but	 studies	 should	not	 rely	 solely	 on	
visual	analysis	alone.	A	formal	examination	of	the	size	of	the	effect	
relative	to	sampling	variation	is	a	key	tool	in	evaluating	new	scientific	
claims.

3  | NULL HYPOTHESIS SIGNIFIC ANCE 
TESTING (NHST)

Despite	 its	widespread	 use	 in	 science,	 the	 development	 of	NHST	
has	 its	 roots	 in	 industrial	 applications.	For	 instance,	Ronald	Fisher	
developed	the	analysis	of	variance	working	with	experimental	crop	
data,	and	William	Gosset	(nominated	here	as	the	patron	saint	of	geo-
biological	data	analysis)	developed	the	Student's	t	test	working	to	in-
crease	yields	at	the	Guinness	Brewery	(Student,	1908).	When	faced	
with	two	(or	more)	groups	of	samples,	each	with	scatter,	the	perti-
nent	question	is	whether	the	sets	of	samples	may	actually	represent	
the	same	underlying	data	distribution,	with	observed	variation	be-
tween	groups	arising	from	sampling	of	this	distribution	(The	null	hy-
pothesis,	H0,	is	that	there	is	no	difference	between	groups;	in	other	
words,	there	is	only	one	underlying	distribution).	In	NHST,	this	ques-
tion	is	addressed	by	comparing	the	means	or	medians	of	the	groups	
(and	data	variability)	and	calculating	the	probability	that	a	result	at	
least	that	extreme	would	be	found	if	the	groups	were	drawn	from	
the	same	distribution	or	population.	This	probability	is	expressed	as	
the	p-	value.	Incorrectly	rejecting	the	null	hypothesis	(a	false	positive)	
is	referred	to	as	Type	I	error,	and	incorrectly	failing	to	reject	the	null	
hypothesis	 (a	false	negative)	 is	Type	II	error.	A	variety	of	paramet-
ric	 (those	 that	depend	on	a	 specified	probability	distribution	 from	
which	 the	 data	 are	 drawn)	 and	 nonparametric	 (those	 that	 do	 not)	
statistical	 analyses	exist	 to	make	 these	comparisons	between	 two	
or	more	groups.	A	 full	 review	of	particular	analyses	 is	beyond	 the	
scope	of	 this	 article	and	 is	best	 found	 in	 statistical	 textbooks	and	
web	resources.

Choosing	the	correct	statistical	analysis	 for	a	given	set	of	data	
poses	some	issues,	but	the	more	important	issue—the	focus	of	this	
piece—is	 understanding	 the	 fundamental	 logic	 of	 statistical	 tests:	
What	 they	do	and	do	not	 tell	you.	 It	 is	errors	 in	 logic,	 rather	 than	

someone	 using	 a	 t	 test	 when	 they	 should	 have	 used	 a	Wilcoxon,	
which	are	most	problematic.	One	common	fallacy	regarding	NHST	
is	that	the	level	of	significance	rejecting	the	null	hypothesis	(the	p-	
value)	is	the	probability	that	the	null	hypothesis	is	correct.	There	is	
a	wide	literature	discussing	this	fallacy,	with	one	of	the	best	being	
Cohen's	1994	essay	 “The	Earth	 is	 round	 (p	<	0.05).”	He	notes	 that	
what	we	want	to	know,	as	researchers,	is	“given	these	data,	what	is	
the	probability	that	H0	is	true?”	But	what	NHST	tells	us	is	“given	that	
H0	is	true,	what	is	the	probability	of	these	(or	more	extreme)	data?”	
In	other	words,	 rejecting	a	 specific	null	hypothesis	does	not	actu-
ally	confirm	any	underlying	truth	or	theory.	Addressing	this	requires	
knowing	 the	 likelihood	 that	 a	 real	 effect	 exists	 in	 the	 first	 place,	
which	may	be	difficult	to	calculate.	Even	if	these	odds	can	be	calcu-
lated,	 the	combined	uncertainty	results	 in	more	substantial	murki-
ness	about	the	results	than	the	p-	value	alone	indicate	(Nuzzo,	2014,	
provides	more	 information	on	what	a	p-	value	 really	 tells	you—in a 
form	more	palatable	to	the	average	reader	than	Cohen—as	well	as	
a	historical	discussion	of	how	the	p	=	0.05	threshold	came	about).

Another	 common	 error	 in	 interpreting	 formal	 statistical	 tests	
regards	 “mechanical	 dichotomous	 decisions	 around	 a	 sacred	 0.05	
criterion”	 (Cohen,	 1994).	 Obvious	 to	 most	 readers	 is	 that	 a	 5.5%	
probability	of	generating	results	at	least	that	extreme	(e.g.,	p	=	0.055)	
is	basically	no	different,	in	an	interpretive	sense,	than	a	4.5%	prob-
ability	(p	=	0.045).	In	other	words,	p <	0.05,	p <	0.01,	and	p <	0.005	
(Benjamin	 et	al.,	 2018,	 recently	 advocated	 for	 the	 more	 stringent	
p <	0.005	 statistical	 criteria)	 are	 all	 arbitrary	 criteria,	 although	 still	
useful	conventions.	A	memorable	quote	by	Rosnow	and	Rosenthal	
(1989)	states:

We	want	 to	 underscore	 that,	 surely,	 God	 loves	 the	
0.06	 nearly	 as	much	 as	 the	 0.05.	 Can	 there	 be	 any	
doubt	that	God	views	the	strength	of	evidence	for	or	
against	the	null	as	a	fairly	continuous	function	of	the	
magnitude	of	p?

Yet	while	researchers	 inherently	“know”	p	=	0.045	and	0.055	are	
really	no	different,	one	result	is	deemed	“true”	and	publishable	(posi-
tive	publication	bias)	and	one	is	deemed	inconsequential	and	ignored.	
Or	in	Rosnow	and	Rosenthal's	more	dramatic	prose:

It	may	not	 be	 an	 exaggeration	 to	 say	 that	 for	many	
PhD	students,	for	whom	the	0.05	alpha	has	acquired	
an	almost	ontological	mystique,	it	can	mean	joy,	a	doc-
toral	 degree,	 and	 a	 tenure-	track	 position	 at	 a	major	
university	 if	 their	 dissertation	p	 is	 <	0.05.	However,	
if	the	p	 is	>	0.05,	it	can	mean	ruin,	despair,	and	their	
advisor's	suddenly	thinking	of	a	new	control	condition	
that	should	be	run.

Take home message:	 Null	 Hypothesis	 Significance	 Testing	 inves-
tigates	 the	 probability	 (expressed	 as	 p-	values)	 of	 finding	 results	 as	
extreme	 as	 the	 observed	 data,	 given	 the	 null	 hypothesis.	 Of	 note,	
p-values	 cannot	 address	 the	 likelihood	 that	 a	 hypothesis	 is	 correct.	
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p-	value	 thresholds	 represent	arbitrary	cutoffs	 rather	 than	 true/false	
criteria	for	accept/reject	decisions.

4  | MULTIPLE TESTING AND RESE ARCHER 
DEGREES OF FREEDOM

A	 colleague	 once	 described	 a	 conference—in	 the	 pre-	PowerPoint	
days—in	 which	 geologists	 were	 instructed	 to	 bring	 an	 overhead	
transparency	 summarizing	 the	 record	 of	 their	 subfield	 through	
Earth	history	(tectonic	events,	fossil	trends,	geochemical	proxy	re-
cords,	etc.)	along	the	same	x-	axis	 temporal	scale.	The	participants	
then	 took	 turns	 swapping	different	 transparencies	on	and	off	 the	
projector,	 looking	 for	 correlations.	 This	 strategy	 was	 innovative	
from	 a	 data	 exploration	 perspective—and	 indeed	 sounds	 intellec-
tually	stimulating—but	ultimately	is	a	nightmare	regarding	multiple	
comparisons.	The	multiple	 comparison	problem	essentially	 results	
from	“more	shots	on	goal.”	 It	can	be	 illustrated	with	the	following	
example—the	 probability	 of	 flipping	 any	 given	 coin	 as	 “heads”	 10	
times	out	of	10	is	very	low;	however,	if	this	is	done	over	and	over,	
the	probability	 that	one	coin	will	be	 “heads”	every	 time	obviously	
increases.	It	would	be	incorrect,	though,	to	conclude	that	that	coin	
is	different	from	the	rest.	Specifically	for	NHST,	the	probability	of	
a	false	positive	in	a	battery	of	tests	will	be	1	–	(1	–	α)k,	where	alpha	
(α)	is	the	significance	level	required	(e.g.,	p	<	0.05)	and	k	is	the	num-
ber	of	tests	performed	(discussed	in	detail	in	Streiner,	2015).	For	10	
separate	tests	at	the	standard	level	of	significance,	the	probability	
of	a	false	positive	is	1	–	(1	–	0.05)10	or	about	40%.	This	issue	is	per-
haps	even	better	illustrated	by	Figure	2	below	(analyzing	the	effect	
of	jelly	bean	colors).

Uncorrected	multiple	comparisons	are	one	of	the	primary	causes	
of	 replicability	 issues	 across	 many	 scientific	 fields.	 In	 some	 cases,	
these	comparisons	may	have	been	done	explicitly,	such	as	with	the	
green	jelly	beans.	Many	reports	in	the	1990s	and	2000s	about	what	
genes	“cause”	specific	effects	in	humans	were	the	spurious	result	of	
trawling	limited	genetic	data	across	comprehensive	epidemiological	
datasets	and	 looking	for	“significant”	correlations.	An	analog	 in	our	
field	may	be	instances	where	biological	data	of	interest	(e.g.,	micro-
bial	abundance/ecological	traits/gene	expression)	are	collected	from	
a	modern	environment,	such	as	a	hot	spring,	alongside	environmen-
tal	 data.	Which	 environmental	 parameters	 are	 correlated	with	 the	
biological	metric	of	 interest?	(leaving	aside	the	broader	question	of	
correlation	and	causality).	 It	would	be	 inappropriate	 to	simply	con-
duct	a	pairwise	comparison	of	all	the	environmental	parameters	with	
the	biological	metric	without	correction	for	multiple	tests.	By	chance	
alone,	 some	 parameters	 might	 be	 significantly	 correlated:	 In	 null	
datasets,	p	<	0.05	occurs,	by	definition,	5%	of	the	time.

Perhaps	more	insidiously,	multiple	comparisons	can	be	done	im-
plicitly	or	unconsciously.	For	instance,	a	researcher	may	complete	a	
compilation	of	 fossil	 data	 from	 shelly	 invertebrates	 and	 then	half-	
asleep	in	the	shower	mentally	wander	through	all	the	different	geo-
logical	data	records	(sea	level,	temperature,	redox	proxies,	strontium	
isotopes,	etc.)	before	snapping	awake	after	noting	that	the	identified	

fossil	 trend	 looks	 very	 similar	 to	 a	 previously	 published	 record	 of	
calcium	isotopes.	A	single	statistical	comparison	is	made,	and	voila:	
p	<	0.05.	 Perhaps	 something	 in	 the	 calcium	 cycle	 is	 affecting	 the	
livelihood	of	these	shell-	forming	organisms?	Maybe.	In	this	case,	the	
researcher	 did	 not	 explicitly	 test	 each	 comparison	with	 a	p-	value,	
as	 in	the	jelly	bean	or	hot	springs	example,	but	the	researcher	still	
mentally	conducted	the	equivalent	of	swapping	out	overhead	trans-
parencies:	multiple	comparisons	until	a	match	was	found.	A	related	
problem	is	exploratory	data	analysis	as	data	are	being	generated	(the	
role	of	exploratory	data	analysis	is	discussed	further	below).	A	range	
of	analyses	might	be	conducted,	with	one	predictor	variable	out	of	
many	yielding	a	significant	correlation.	When	the	full	dataset	is	gen-
erated,	“only	one”	explicit	test	is	conducted	on	the	final	dataset	and	
included	in	the	publication,	with	the	researcher	honestly	forgetting	
just	how	many	analyses	had	been	conducted.	Or,	a	spuriously	signif-
icant	p-	value	is	found	early	on,	say	for	all	available	marine	samples,	
which	then	disappears	as	more	data	are	added.	A	second	analysis,	
looking	 at	 individual	 ocean	 basins,	 and	 a	 third,	 looking	 by	 depth	
class,	 are	 conducted,	 perhaps	 excluding	 some	 extreme	 outliers,	
until	another	significant	p-	value	 reappears	 [so-	called	p-	hacking,	or	
“researcher	degrees	of	freedom”;	Simmons,	Nelson,	and	Simonsohn	
(2011)].	 It	 is	then	this	sub-	group	analysis	that	 is	emphasized	in	the	
manuscript.	More	often	than	not,	it	is	an	unwitting	error	by	a	scien-
tist	excitedly	analyzing	their	data.	Remember	Feynman's	quote	that	
“the	first	principle	is	that	you	must	not	fool	yourself—and	you	are	the	
easiest	person	 to	 fool.”	This	 is	not	 to	discourage	data	exploration,	
but	correctly	accounting	for	these	comparisons—or	at	least	remain-
ing	cognizant	of	the	issue—will	ultimately	be	key	to	producing	lasting	
insights.

4.1 | Avoiding multiple comparison pitfalls

How	then	should	one	account	for	multiple	comparisons?	The	best	
approach	is	early,	explicit	planning.	The	gold	standard,	as	practiced	
in	 clinical	 trials,	 is	 pre-	registration	 (for	 instance,	 on	 ClinicalTrials.
gov	run	by	the	U.S.	National	Library	of	Medicine).	 In	this	strategy,	
the	researcher	publishes	a	white	paper	prior	to	starting	the	experi-
ments,	explicitly	detailing	how	the	data	will	be	collected	(including	
the	stopping	point),	and	the	number	and	types	of	statistical	analyses	
to	be	conducted.	They	are	then	held	to	this	plan,	or	the	trial	is	not	
considered	 valid.	 Such	 a	 strategy	 is	 often	 considered	 an	unrealis-
tic	ideal	outside	of	clinical	trials,	but	notably	an	effort	to	publically	
post	methodologies	a priori	has	recently	been	initiated	for	molecular	
phylogenetics	(Phylotocol;	DeBiasse	&	Ryan,	2018),	a	field	particu-
larly	 susceptible	 to	 “researcher	 degrees	 of	 freedom.”	Whether	 or	
not	such	registries	are	appropriate	for	geobiology	in	the	long	term	
is	a	subject	for	debate,	and	certainly	the	approach	ignores	the	fact	
that	much	of	our	science	 (especially	 field	science)	 is	 truly	 “discov-
ery	driven”	rather	than	“hypothesis	driven.”	Nonetheless,	increased	
pre-	experiment	effort	put	into	planning	statistical	analyses	will	be	
effective	in	reducing	multiple	comparison	“creep.”	This	may	be	par-
ticularly	useful	to	bring	up	during	project	planning	with	early-	career	
researchers,	 as	 essentially	 all	 aspects	 of	 experimental	 design	 are	
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being	taught	at	that	point.	Discussions	of	study-	level	reproducibility	
should	 also	 start	making	 it	 into	undergraduate	 and	graduate	geo-
biology	 curricula,	 as	 for	 instance	 is	 occurring	 in	 some	psychology	
programs	(Button,	2018).

Moving	 from	 pre-	experiment	 awareness	 and	 planning	 to	 post-	
experiment	data	analysis,	there	are	several	techniques	to	account	for	
multiple	comparisons	(“multiple	testing	correction”	or	“alpha	inflation	
correction”).	Certain	Bayesian	approaches	may	not	require	explicit	cor-
rection	(see	Gelman,	Hill,	&	Yajima,	2012),	but	in	a	frequentist	context	
a	common	approach	is	to	apply	a	direct	correction	that	accounts	for	
the	 increased	 family-	wise	 error	 rate.	 The	 Bonferroni	 correction,	 for	
instance,	 divides	 the	 level	 of	 significance	 required	 (e.g.,	α	=	0.05)	 by	
the	number	of	independent	analyses	conducted.	So,	a	researcher	in-
vestigating	how	brachiopod	body	size	changed	between	four	different	
stratigraphic	formations	would	require	p	<	0.008	(an	overall	α	=	0.05	/	
6	independent	pairwise	tests	=	0.008)	in	order	to	achieve	significance.	
Another	common	practice	for	such	an	analysis	(multiple	pairwise	com-
parisons)	is	to	conduct	an	omnibus	test	such	as	ANOVA,	followed	by	
a	post	hoc	test	such	as	the	Tukey	HSD	test	that	directly	accounts	for	
increased	family-	wise	error.

This	 general	 practice	 of	 alpha	 inflation	 correction	 has	 received	
some	criticism,	 as	 the	 thresholds	 for	 significance	can	be	overly	 con-
servative,	 leading	 to	more	 false	 negatives	 and	 potentially	 restricting	
the	path	of	future	scientific	curiosity	(Moran,	2003;	Rothman,	1990).	
Such	criticisms	commonly	note	that	studies	in	their	fields	often	have	
“a	small	number	of	replicates,	high	variability,	and	(subsequently)	 low	
statistical	power”	 (Moran,	2003).	Dr.	Turekian	might	well	 relate!	The	
argument	put	forth	by	such	papers	is	that	the	increased	incidence	in	
false	positives	is	not	really	an	issue,	because	other	researchers	will	re-
peat	the	experiments,	be	unable	to	replicate	them,	and	the	false	claims	
will	eventually	disappear	from	the	literature.	However,	careful	study	of	
replication	attempts	 in	psychiatry	and	psychology	has	demonstrated	
that	(a)	uncorrected	multiple	comparison	testing	does	empirically	lead	
to	a	morass	of	published	false	positives	(Duncan	&	Keller,	2011),	and	(b)	
the	original	hypotheses	do	not	simply	disappear	from	the	literature	but	
have	incredible	persistence	(Ioannidis,	2012).	The	causes	of	such	per-
sistence	are	varied	but	basically	boil	down	to	low	incentives	for	journals	
or	authors	to	publish	negative	replications	(Ioannidis,	2012;	Simmons	
et	al.,	2011).	While	these	arguments	on	the	stringency	of	multiple	test-
ing	corrections	are	not	meritless	 (see	next	paragraph),	 in	our	opinion	
widespread	Type	I	errors	(false	positives)	are	a	far	greater	hindrance	to	
the	advancement	of	science	than	Type	II	errors	(false	negatives).

That	said,	determining	the	correct	balance	between	the	likelihood	
of	false	negatives	and	false	positives,	as	well	as	encouraging	cutting-	
edge	 methods	 development	 that	 must	 start	 with	 small	 datasets	

F IGURE  2 Figure	modified	from	the	webcomic	XKCD.com.	
Multiple	statistical	comparisons	increase	the	probability	of	a	false-	
positive	result	(“more	shots	on	goal”).	Specifically,	with	twenty	
independent	comparisons	as	shown	in	the	comic,	the	probability	
of	a	false	positive	is	~65%	(Streiner,	2015)
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(Turekian's	point),	is	obviously	a	complicated	endeavor.	Several	other	
methods,	 such	 as	 the	 Holm	 and	 Hochberg	 methods	 (reviewed	 by	
Streiner,	 2015),	 offer	protection	against	 alpha	 inflation	but	 are	not	
as	 conservative	 as	 a	 strict	 Bonferroni	 correction.	 Such	 corrections	
should	also	follow	common	sense,	as	they	can	degenerate	into	the	ab-
surd	(García,	2004;	Streiner,	2015).	For	instance,	how	many	truly	in-
dependent	comparisons	are	really	being	conducted?	Oceanographic	
factors	such	as	temperature,	oxygen,	pH,	light,	and	pressure	can	all	be	
broadly	correlated	with	depth.	Comparing	all	of	these	against	micro-
bial	abundances	might	result	in	multiple	significant	correlations	that	
become	(inappropriately)	non-	significant	after	correction	for	multiple	
comparisons.	Another	issue	to	consider	is	whether	there	may	be	pre-	
existing	hypotheses	that	motivated	the	study.	For	the	brachiopodol-
ogist	studying	body	size	across	four	formations,	they	may	be	testing	
previous	hypotheses	of	body	size	evolution	during	a	specific	time	pe-
riod	(e.g.,	Heim,	Knope,	Schaal,	Wang,	&	Payne,	2015).	The	real	test	
may	be	between	the	stratigraphically	lowest	and	highest	formations,	
and	 it	may	be	unduly	stringent	 to	 require	a	very	 low	value	p-	value	
resulting	from	the	multiple	pairwise	comparisons.

This	difference	has	been	discussed	by	Streiner	(2015)	as	the	differ-
ence	between	hypothesis	testing	(which	may	not	require	correction)	
and	hypothesis	 generating	 (which	 should	be	 reported	as	 tentative	
and/or	exploratory	results).	Or	in	plainer	language,	exploratory	data	
analysis	can	be	good,	and	explicit	hypothesis	 testing	can	be	good,	
but	the	approach	being	used	should	be	clear.	Indeed,	there	are	many	
powerful	techniques	(including	new	machine	learning	techniques)	to	
understand	which	of	multiple	predictor	variables	might	best	explain	
variance	 in	 the	 response	 variable	of	 interest	 (a	 situation	we	often	
face	in	geobiology).	The	results	of	such	analyses,	though,	cannot	be	
turned	around	and	presented	as	an	a priori	hypothesis	complete	with	
a	significant	p-	value.	Dr.	Brian	McGill's	blog	post	provides	a	cogent	
“defense”	 of	 exploratory	 data	 analysis:	 (https://dynamicecology.
wordpress.com/2013/10/16/in-praise-of-exploratory-statistics).	He	
closes,	“I	use	exploratory	statistics	and	I'm	proud	of	it!	And	if	I	claim	
something	was	a	hypothesis	it	really	was	an	a priori	hypothesis.	You	
can	trust	me	because	 I	am	out	and	proud	about	using	exploratory	
statistics.”

The	key	thread	running	through	these	statistical	commentaries	
regarding	 multiple	 comparisons	 is	 conscientiousness—personally	
with	respect	to	how	many	analyses	have	been	conducted,	but	also	
with	 respect	 to	how	 the	 full	 scope	of	 statistical	procedures	 is	de-
scribed	in	the	paper.	Simmons	et	al.	(2011)	provide	excellent	guide-
lines	 in	 this	 regard	 for	both	authors	and	reviewers.	Notably,	while	
promoting	strict	 reporting	guidelines,	 these	authors	also	advocate	
for	increased	tolerance	of	statistical	“imperfection”	by	reviewers	and	
editors	in	well-	documented	papers:	“one	reason	researchers	exploit	
research	 degrees	 of	 freedom	 is	 the	 unreasonable	 expectation	we	
often	impose	as	reviewers	for	every	data	pattern	to	be	(significantly)	
as	 predicted.	 Under-	powered	 studies	with	 perfect	 results	 are	 the	
ones	that	should	invite	extra	scrutiny.”

Finally,	at	the	end	of	this	discussion,	it	is	worthwhile	to	ask	your-
self	the	basic	question	of	whether	multiple	testing	is	an	issue	in	your	
particular	research	area.	If	you	are	working	solely	with	a	single	proxy	

record,	or	an	isolated	genetic	system,	the	answer	might	be	no.	The	
issue	 arises	 if	 you	want	 to	 understand	what	 correlates	 with	 your	
data—if	there	is	a	large	constellation	of	possible	correlates,	there	is	
an	 equally	 large	 likelihood	of	 spurious	 correlations.	 Learning	 from	
the	 abysmal	 record	 of	 replication	 in	 other	 fields,	 caution	 against	
alpha	inflation	in	these	cases	will	be	a	cornerstone	to	a	robust	and	
healthy	field	of	geobiology.

Take home message:	Vigilance	against	alpha	inflation	starts	with	
the	individual	researcher,	ideally	during	the	pre-	experimental	de-
sign	phase.	Data	exploration	is	encouraged,	but	trawling	through	
data	 for	 significant	 correlations	 that	 are	 then	 presented	 as	 an	 
a priori	hypothesis	must	be	avoided:	Papers	should	explicitly	state	
if	they	are	to	be	viewed	as	exploratory.	The	full	sweep	of	data	col-
lected,	statistical	tests	conducted,	and	choices	of	data	inclusion/
exclusion	(or	other	“degrees	of	freedom”)	by	a	researcher	should	
be	 made	 clear	 in	 publication	 in	 order	 to	 avoid	 cherry-	picking	
(Simmons	et	al.,	2011).

5  | EFFEC T SIZE

So	 let	us	 say	you	have	 found	a	 significant	difference	between	 two	
groups	of	data,	and	through	attentive	practice	and	analysis,	you	have	
determined	 it	 is	 not	 a	 chance	 result	 based	 on	 numerous	 “shots	 on	
goal.”	The	question	now	is—does	the	result	matter?	This	last	question	
seems	 silly,	 but	 a	mistaken	 focus	on	 significant	p-	values	 as	 the	be-	
all/end-	all,	instead	of	on	effect	size,	has	hampered	progress	in	fields	
such	as	ecology	(Fidler	et	al.,	2004).	Simply,	effect	size	is	a	quantita-
tive	measure	of	the	magnitude	of	a	phenomenon.	Statistical	power	is	
the	likelihood	that	an	analysis	will	detect	a	real	effect	(as	determined	
by	a	significant	p-	value),	and	is	governed	by	the	size	of	the	effect,	the	
variation	present	in	the	groups,	the	number	of	samples	in	the	analysis,	
and	the	threshold	for	significance	(α).	Thus,	two	groups	with	widely	
separated	means	 (large	effect	 size)	 and	 little	within-	group	variation	
will	require	relatively	few	samples	for	a	well-	powered	study.

The	 flip	 side	 of	 this—and	why	 p-	values	must	 be	 regarded	 as	
the	 statistical	 likelihood	 a	 result	 that	 extreme	 would	 be	 found	
by	 chance,	 rather	 than	 how	 “important”	 a	 result	 is—is	 that	 given	
enough	samples,	literally	any	effect	size,	no	matter	how	small,	can	
be	detected.	This	has	received	considerable	attention	in	the	sta-
tistical	literature:

[The	null	hypothesis]	can	only	be	true	in	the	bowels	
of	a	computer	processor	running	a	Monte	Carlo	study	
(and	even	then	a	stray	electron	may	make	it	false).	If	it	
is	false,	even	to	a	tiny	degree,	it	must	be	the	case	that	
a	large	enough	sample	will	produce	a	significant	result	
and	 lead	 to	 its	 rejection.	So	 if	 the	null	hypothesis	 is	
always	false,	what's	the	big	deal	in	rejecting	it?

(Cohen,	1990)

At	 this	 point,	 you	 may	 be	 asking,	 “since	 what	 we	 are	 really	 in-
terested	 in	 is	 effect	 size,	 and	given	Cohen's	 statement	 that	 the	null	

https://dynamicecology.wordpress.com/2013/10/16/in-praise-of-exploratory-statistics
https://dynamicecology.wordpress.com/2013/10/16/in-praise-of-exploratory-statistics
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hypothesis	is	always	false,	do	we	even	need	to	run	statistical	tests?”	
Yes!	Without	a	significant	result,	there	is	no	reason	to	believe	the	ob-
served	results	may	not	be	due	to	sampling	variation.	In	other	words,	
significance	is	the	jumping	off	point,	the	license	to	start	talking	about	
effect	size	from	a	position	of	confidence.	For	further	reading,	the	re-
lationship	between	sample	size,	p-	values,	and	accuracy	in	inferring	ef-
fect	 size	 is	 intelligently	dissected	by	Halsey,	Curran-	Everett,	Vowler,	
and	Drummond	(2015).

What	constitutes	an	important	effect	will	vary	by	field.	Returning	
to	the	coin	toss	example,	given	millions	or	billions	or	trillions	of	flips—
whatever	the	required	sample	size	may	be—the	differing	weights	of	
the	coin	sides	will	ultimately	cause	one	side	to	land	up	significantly	
more	 times	 than	 the	 other.	 Yet,	 this	 does	 not	 matter	 when	 two	
friends	are	choosing	a	restaurant:	It	is	still	~50:50,	and	the	miniscule	
effect	 size	 is	 irrelevant	 in	 this	 instance.	 This	 is	 the	 difference	 be-
tween	a	significant	effect	and	an	important	effect.	Nonetheless,	this	
fallacy	is	often	committed	in	the	literature:

All	psychologists	know	that	statistically significant	does	
not	mean	plain-	English	significant,	but	if	one	reads	the	
literature,	one	often	discovers	that	a	finding	reported	
in	the	Results	sections	studded	with	asterisks	implic-
itly	becomes	 in	the	Discussion	section	highly	signifi-
cant	or	very	highly	significant,	important,	big!

(Cohen,	1994)

Sometimes,	 though,	 small	 effect	 sizes	 really	 do	matter.	 As	 an	
example,	human	geneticists	have	learned	that	the	majority	of	phe-
notypes	are	not	controlled	by	a	single	gene/locus	(such	as	the	case	
for	Huntington's	disease).	Rather,	characteristics	like	height,	and	the	
risk	of	diseases	such	as	heart	disease,	Type	II	diabetes,	and	depres-
sion	are	caused	by	the	(largely)	additive	effects	of	thousands	of	ge-
netic	loci.	In	the	case	of	psychiatric	disorders,	each	individual	locus	
explains	 far	<1%	of	variance	 in	 risk	 for	a	psychiatric	disorder	 (i.e.,	
small	individual	effects)	and	yet	total	genetic	contributions	explain	
40%–80%	of	the	variance	in	risk	for	these	disorders	(large	summed	
effect)	 (Duncan	et	al.,	2017;	Ripke	et	al.,	2014;	Wray	et	al.,	2018).	
Thus,	 as	 our	 questions	 move	 toward	 datasets	 with	 hundreds	 or	
thousands	of	measurements,	the	focus	must	be	on	geobiologically	
important	effect	sizes	(which	will	vary	by	question)	and	confidence	
intervals	rather	than	simply	statistical	significance.

6  | INTERPRETATIVE E X AMPLES

The	relationship	between	p-	values	 (significance),	effect	size,	and	
sample	size	is	illustrated	in	Figure	3.	Note	there	is	no	relationship	
implied	 between	 the	 left	 and	 right	 panels,	 they	 are	 simply	 illus-
trative	examples	of	 these	concepts.	 In	Panel	A,	a	 researcher	has	
identified	 relationships	 that	 appear	 interesting	 to	 pursue,	 with	
the	Group	B	mean	~50%	higher	than	Group	A	in	the	t	test	exam-
ple	 (left	 side).	On	 the	 right	 side,	 the	predictor	 variable	 accounts	
for	27%	of	the	variation	(R2	value)	in	the	regression	example.	But	

the	 results	 are	 not	 statistically	 significant.	 Especially	 in	 light	 of	
recent	claims	 that	p <	0.05	 is	 too	 lax	a	standard	 (Benjamin	et	al.,	
2018),	there	is	a	strong	likelihood	that	this	result—specifically	the	
observed	size	and	direction	of	 the	effect—is	due	 to	 sampling	ef-
fects	 (Halsey	 et	al.,	 2015).	 If	 this	were	 your	 hard-	won	data,	 it	 is	
important	 to	 avoid	 the	 temptation	of	 knowingly	or	 unknowingly	
manipulating	the	data	(p-	hacking)	to	achieve	a	“significant	result.”	
For	 instance,	 simply	 removing	 the	 lowest	 data	 point	 in	Group	B	
results	in	p = 0.03,	significant!	Maybe,	there	is	an	imminently	logi-
cal	reason	to	exclude	that	data	point—perhaps	it	 is	from	a	differ-
ent	and	inappropriate	lithology,	or	the	sampling	methodology	was	
actually	different.	The	goal	though	is	to	avoid	inventing	post	hoc	
justifications	for	data	manipulation,	as	it	is	so	easy	to	fool	yourself,	
particularly	if	removing	that	point	provides	support	for	long-	held	
ideas	 (confirmation	 bias).	 If	 such	 data	 exclusions	 are	made,	 they	
should	be	noted	clearly	in	the	manuscript,	and	both	sets	of	analy-
ses,	 with	 a	 reasoned	 explanation,	 should	 be	 included	 (Simmons	
et	al.,	2011).	Moving	toward	shared	transparency	within	scientific	
subfields	for	data	collection,	reporting	and	presentation	methods	
will	be	instrumental	in	helping	researchers	present	reasonable	re-
sults	with	less	threat	of	conscious/unconscious	p-	hacking.	Panel	B	
depicts	essentially	the	same	analysis	as	in	Panel	A,	but	with	more	
samples.	 In	this	case,	the	result	 is	significant,	and	the	researcher	
can	feel	more	confident	describing	the	size	and	direction	of	the	ef-
fect.	Note	that	if	Panel	B	were	an	extension	of	the	study	in	Panel	A,	
the	best	practice	(sometimes	difficult	to	achieve	but	nonetheless	
the	best	practice)	 is	actually	 to	establish	a	pre-	determined	stop-
ping	point	 for	 data	 collection	 (Simmons	 et	al.,	 2011).	Continuing	
to	add	bits	of	data,	with	the	analysis	rerun	each	time,	effectively	
represents	multiple	tests.

Panel	C	depicts	how	with	larger	sample	sizes	the	power	to	iden-
tify	 small	 but	 statistically	 significant	 effects	 also	 increases.	 In	 the	
comparison	of	groups	A	and	B,	the	means	only	differ	by	~3%,	but	the	
result	is	highly	significant	(p =	0.007).	In	the	regression	analysis,	the	
predictor	variable	only	describes	4%	of	the	variation	in	the	response	
variable,	but	nonetheless,	the	result	is	significant	by	traditional	mea-
sures	(p =	0.047).	Looking	at	the	scatter	in	this	plot	is	instructive,	as	
it	appears	as	a	cloud	of	points	with	no	correlation,	but	statistically,	
a	small	correlation	does	exist.	 In	other	words,	 it	visually	 illustrates	
the	 quotes	 from	Cohen:	 Effect	 size,	 not	 significance	 alone,	 is	 the	
end	goal.	As	also	previously	discussed,	 the	ultimate	 interpretation	
of	importance	is	question-		and	field-	specific.	To	reiterate	the	point,	
robust	 increases	 in	 crop	 yields	 of	 4%	may	 feed	millions,	 whereas	
a	change	of	4%	 in	modern	marine	 sulfate	 levels	 (e.g.,	~1	mM)	may	
have	little	relevance	to	current	research	questions	regarding	sulfur	
biogeochemistry.

7  | BEST PR AC TICES MOVING FORWARD

We	start	this	“best	practices”	section	from	a	humble	position,	as	we	are	
by	no	means	trained	statisticians	but	rather	enthusiastic	advocates	for	
increased	statistical	rigor	in	geobiology.	We	have	made	(or	will	make)	
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technical	 and	 logical	 errors	 in	our	published	papers	 and	 almost	 cer-
tainly	have	made	unconscious	“researcher	degrees	of	freedom”	deci-
sions	that	impacted	results	(Simmons	et	al.,	2011).	Even	Jacob	Cohen,	
whose	thoughtful	papers	we	have	cited	numerous	times,	was	called	out	
for	incorrect	statistical	logic	(Oakes,	1986).	Learning	correct	statistical	
practice	and	logic	is	thus	a	career-	long	endeavor	for	most	scientists.

As	a	first	step,	we	suggest	that	both	reviewers	and	authors	in-
sist	on	some	form	of	statistical	analysis	as	a	best	practice	approach.	
The	critical	concept	here	is	that	your	particular	set	of	measurements	

is	not	a	static	truth	about	a	group.	Rather,	 they	are	values	drawn	
from	a	distribution,	 and	 repeated	draws	may	yield	 very	different	
results—especially	at	low	sample	sizes	(Halsey	et	al.,	2015).	We	do	
recognize	that	many	geobiological	studies	will	not	lend	themselves	
to	 formal	 statistical	 tests	 and	 that	 there	 is	 a	 healthy	 tradition	of	
discovery-	based	 geobiological	 science—especially	 in	 field	 stud-
ies—that	 should	 not	 be	 stifled.	Nonetheless,	 if	 a	 paper	 is	 report-
ing	observed	differences	between	groups	or	correlations	between	
variables,	it	is	scientific	due-	diligence	to	investigate	the	degree	to	

F IGURE  3 The	relationship	between	
significance,	effect	size,	and	sample	size	
shown	with	hypothetical	data	points.	This	
is	depicted	for	measurements	sampled	
from	two	different	groups	(left	side)	and	
correlation	between	a	predictor	variable	
and	response	variable	(right	side);	note	
there	is	no	strict	relationship	between	the	
data	in	the	two	panels.	(a)	Small	sample	
sizes	may	reveal	a	large	effect,	but	the	
result	is	not	significant	and	should	be	
considered	an	intriguing	finding	rather	
than	a	confident	conclusion.	(b)	With	
increased	sampling,	a	researcher	may	
(or	may	not)	reveal	a	significant	effect.	
The	sign	(direction)	of	this	effect	is	likely	
correct,	while	increased	sampling	will	
lead	to	better	accuracy	of	the	effect's	
magnitude.	(c)	Given	enough	sampling,	
even	the	smallest	effect	size	will	become	
statistically	significant.	The	right	side	plot	
in	c	is	visually	informative	in	this	regard—
what	appears	to	be	a	cloud	of	points	are,	
statistically	speaking,	correlated.	For	
illustrative	purposes,	we	have	described	
effects	here	as	“large”	and	“small,”	but	as	
discussed	in	the	text,	this	distinction	will	
be	field-		and	question-	specific
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which	these	differences	would	be	expected	given	the	null	hypoth-
esis	(or	more	broadly,	the	uncertainty	of	the	result).

In	this	respect,	we	note	that	we	have	focused	primarily	here	on	
formal	NHST,	but	there	are	certainly	other	strategies	such	as	model-	
based	approaches,	information	theoretic	approaches,	and/or	boot-
strapping	that	achieve	the	same	general	goal	of	understanding	true	
relationships	 (as	 distinguished	 from	 spurious	 results	 that	 are	 sim-
ply	 due	 to	 sampling	 variability).	 For	 instance,	maximum	 likelihood	
and	 Bayesian	 approaches	 to	 assess	 the	 impact	 of	 random	 error	
are	 the	 common	 practice	 in	molecular	 phylogenetics.	 The	 debate	
about	whether	 formal	NHST	 should	 be	 retained	 and	 improved	or	
done	away	with	is	decades	old,	rages	still,	and	is	not	something	we	
can	adequately	address	here	 (Benjamin	et	al.,	2018;	Cohen,	1994;	
Falk	&	Greenbaum,	 1995;	 Fidler	 et	al.,	 2004;	Halsey	 et	al.,	 2015).	
And	as	Cohen	(1994)	noted,	there	is	no	magic	alternative	to	NHST.	
Certainly,	though,	all	approaches	discussed	above	are	more	likely	to	
lead	to	correct	inference	than	visual	inspection	of	data.

As	 statistical	 tests	 are	 increasingly	 implemented	 in	 geobiol-
ogy,	the	next	step	is	to	learn	from	the	mistakes	of	other	fields	and	
help	each	other	not	fall	foul	of	the	fallacies	described	in	this	essay.	
Specifically,	the	points	to	avoid	are:

1.	 Not	 correctly	 accounting	 for	 multiple	 testing.
2.	 Considering	the	p-value	to	be	the	probability	that	the	hypothesis	
is	correct.

3.	 Considering	p =	0.045	to	be	a	dramatically	stronger	rejection	of	
the	 null	 hypothesis	 than	 p =	0.055	 (“mechanical	 dichotomous	
decisions”).

4.	 Not	 explicitly	 reporting	 “researcher	 degrees	 of	 freedom”	
(Simmons	et	al.,	2011).

5.	 Considering	every	“significant”	result	to	be	an	“important”	result.	
Rather,	significance	should	typically	be	the	requirement	for	posit-
ing	a	 scientific	effect,	which	must	 then	be	put	 into	appropriate	
context.

Of	these,	multiple	testing	and	“researcher	degrees	of	freedom”	are	
likely	the	most	problematic	with	respect	to	reproducibility,	especially	
as	they	can	often	be	done	unconsciously.	Explicit	planning	at	the	start	
of	a	study	is	crucial	in	this	regard.	Also	important	at	the	planning	stages	
is	 power	 analysis.	 Ioannidis	 (2005)	 notes	 that	 in	 terms	 of	 achieving	
long-	lasting	scientific	 insights,	fewer	well-	powered	studies	are	vastly	
preferable	to	many	low-	powered	studies,	and	certainly	the	field	ben-
efits	from	not	chasing	false	leads.	Further,	as	demonstrated	by	Halsey	
et	al.	(2015),	larger	samples	sizes	and	well-	powered	studies	also	more	
precisely	estimate	the	effect	size,	which	is	after	all	what	we	are	inter-
ested	in.	The	challenge	here	is	an	obvious	conflict	between	incentive	
structures	for	the	field	as	a	whole	and	individual	researchers,	specifi-
cally	early-	career	researchers.	Such	considerations	should	ideally	play	
into	evolving	discussions	on	how	post-	docs,	faculty	positions,	and	ten-
ure	are	evaluated.	Fortunately,	in	geobiology	we	are	often	addressing	
first-	order	questions	with	 large	effects,	and	the	required	 increase	 in	
sample	 size	 to	 achieve	 a	well-	powered	 study	 is	often	not	 that	 large	
(Sterne	&	Smith,	2001).

As	one	final	note	regarding	reproducibility,	correctly	document-
ing	 original	 data	 and	 metadata	 in	 accessible	 supplementary	 doc-
uments	 or	 data	 repositories	 is	 key	 to	 allowing	 researchers	 to	 test	
results	 and	 build	 on	 previous	 studies	 in	meta-		 and	mega-	analyses	
(see	for	instance	Ioannidis	et	al.,	2009).	Original	code	used	for	analy-
ses	must	also	be	adequately	curated	in	a	public	repository;	this	step	
is	common	in	biological	fields	such	as	ecology	(Cooper	et	al.,	2017;	
Ram,	2013),	but	is	not	across	geobiology.

To	avoid	 feeding	a	publication	bias	monster,	 and	 to	encourage	
new	developments	in	a	manner	Karl	Turekian	would	be	proud	of,	we	
do	not	advocate	a	strict	requirement	of	significance	for	publication.	
In	our	opinion,	the	results	in	Figure	3,	Panel	A,	if	from	an	emerging	
proxy	record,	would	be	quite	suggestive	and	should	be	considered	
for	publication,	but	the	reader	should	be	notified	how	likely	the	data	
are	(given	the	null	hypothesis).	Power	analysis	is	also	helpful	in	this	
regard	(Cohen,	1992).	As	an	example,	an	influential	genetics	paper	
was	published	in	Nature,	despite	having	null	results	for	the	primary	
hypothesis	 (The	 International	 Schizophrenia	 Consortium,	 2009).	
This	paper	provided	strong	evidence	that	significant	results	would	
be	detectable	with	larger	sample	sizes	in	the	near	future,	and	it	was	
the	application	of	a	recently	developed	statistical	 technique	 (poly-
genic	risk	scoring)	that	made	it	worthy	of	publication	in	Nature.

Moving	 to	 the	 longer-	term	 view,	 the	 “best	 practices”	 described	
above	are	hopefully	useful,	but	 the	goal	 for	 the	next	generation	of	
geobiologists	should	not	be	best	practices	lists	taped	to	the	side	of	cu-
bicles.	Put	simply,	even	the	most	well-	intentioned	of	“best	practices”	
lists	can	 lead	 to	a	 “cookbook”	view	of	data	analysis,	where	 there	 is	
a	right	and	a	wrong	way	to	do	things,	and	statistics	are	a	computer	
button	 to	 push	 after	 data	 acquisition.	 Rather	 the	 goal	 should	 be	 a	
situation	 where,	 for	 many,	 computational	 reasoning	 and	 data	 sci-
ence	are	a	natural,	integrated	part	of	our	science	alongside	field	and	
laboratory	 skills.	The	main	need	 for	 this	 is	 simply	 that	many	of	our	
scientific	questions	do	not	readily	conform	to	classic	statistical	tests.	
As	an	example,	Keller	and	Schoene	(2012)	investigated	how	igneous	
geochemistry	has	changed	through	Earth	history,	and	recognized	that	
these	rocks	are	not	evenly	sampled	in	space	and	time—some	plutons	
are	heavily	sampled,	while	others	were	sampled	rarely	or	not	at	all.	
In	other	words,	 samples	are	not	 independent.	To	address	 this	 issue	
of	sampling	heterogeneity,	they	utilized	a	re-	weighted	bootstrapping	
approach,	with	bootstrap	weights	for	a	given	sample	related	to	the	
spatial	and	temporal	proximity	to	other	samples.	Paleontologists	have	
also	addressed	the	same	 issue	of	sampling	heterogeneity,	but	using	
different	methods	appropriate	to	the	data	archive	of	that	field	(e.g.,	
Alroy,	2010).	Neither	of	these	solutions	came	from	a	statistics	“cook-
book,”	 and	 achieving	 the	 flexibility	 to	 design	 the	most	 appropriate	
test	(be	it	frequentist,	likelihood,	or	Bayesian),	or	to	perform	numeri-
cal	experiments	testing	different	scenarios,	will	require	a	foundation	
in	statistics	but	also,	 importantly,	computational	thinking	 (Weintrop	
et	al.,	 2016).	 Geobiology	 has	 had	 considerable	 success	 in	 breaking	
field	boundaries	and	educating	students	who	are	as	comfortable	with	
a	rock	hammer	as	a	pipette;	integrating	a	computational	and	statistical	
perspective	into	this	training	will	be	the	next	step	to	drawing	robust	
insights	from	ever-	larger	geobiological	datasets.
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In	closing,	we	do	not	expect	a	statistical	 revolution	 in	geobiol-
ogy	 overnight.	 The	 common	 implementation	 of	 statistical	 analy-
ses	 in	 fields	 like	ecology	 took	decades.	 In	 fact,	Gosset	 (“Student”)	
wrote	to	Fisher	regarding	the	t	test	that	“I	am	sending	you	a	copy	of	
Student's	Tables	as	you	are	the	only	[person]	that's	ever	likely	to	use	
them!”	(cited	in	Box,	1981).	We	hope	this	Perspective	helps	start	a	
dialogue	regarding	statistical	practice	in	geobiology,	while	also	rec-
ognizing	it	is	heavily	colored	by	our	perspective—we	look	forward	to	
seeing	commentary	from	other	perspectives	(different	subfields	of	
geobiology,	Bayesianists,	etc.).	Ultimately,	this	will	help	us	avoid	the	
problems	with	reproducibility	present	in	other	fields,	be	more	confi-
dent	in	our	results,	and	as	a	field	move	more	quickly	toward	deeper	
geobiological	understanding.
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