Global **Biogeochemical Cycles**

RESEARCH ARTICLE

10.1029/2020GB006649

Key Points:

- δ238U values were measured in iron-rich, anoxic (ferruginous) modern natural environments, and Paleozoic shales deposited under ferruginous conditions
- δ 238U fractionations in these environments are highly variable and generally indistinguishable from isotopic fractionations associated with oxic settings
- δ 238U fractionations in these environments are highly variable and generally indistinguishable from isotopic fractionations associated with oxic settings

Supporting Information:

• Supporting Information S1

Uranium Isotope Fractionation in Non-sulfidic Anoxic Settings and the Global Uranium Isotope Mass Balance

Devon B. Cole¹, Noah J. Planavsky², Martha Longley², Philipp Böning³, Daniel Wilkes⁴, Xiangli Wang^{5,6}, Elizabeth D. Swanner⁷, Chad Wittkop⁸, David K. Loydell⁹, Vincent Busigny^{10,11}, Andrew C. Knudsen⁴, and Erik A. Sperling¹²

¹School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA, ²Department of Geology and Geophysics, Yale University, New Haven, CT, USA, ³Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany, ⁴Department of Geosciences, Lawrence University, Appleton, WI, USA, ⁵Department of Marine Science, University of Southern Alabama, Mobile, AL, USA, ⁶Dauphin Island Sea Lab, Dauphin Island, AL, USA, ⁷Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, USA, ⁸Department of Chemistry and Geology, Minnesota State University, Mankato, MN, USA, ⁹School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, UK, ¹⁰Institut de Physique du Globe de Paris, Sorbonne Paris Cité, University Paris Diderot, Paris, France, ¹¹Institut Universitaire de France, Paris, France, ¹²Department of Geological Sciences, Stanford University, Stanford, CA, USA

Abstract Uranium isotopes $(^{238}U/^{235}U)$ have been used widely over the last decade as a global proxy for marine redox conditions. The largest isotopic fractionations in the system occur during U reduction, removal, and burial. Applying this basic framework, global U isotope mass balance models have been used

